Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
117 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Class-Conditional Compression and Disentanglement: Bridging the Gap between Neural Networks and Naive Bayes Classifiers (1906.02576v1)

Published 6 Jun 2019 in cs.LG, cs.IT, math.IT, and stat.ML

Abstract: In this draft, which reports on work in progress, we 1) adapt the information bottleneck functional by replacing the compression term by class-conditional compression, 2) relax this functional using a variational bound related to class-conditional disentanglement, 3) consider this functional as a training objective for stochastic neural networks, and 4) show that the latent representations are learned such that they can be used in a naive Bayes classifier. We continue by suggesting a series of experiments along the lines of Nonlinear In-formation Bottleneck [Kolchinsky et al., 2018], Deep Variational Information Bottleneck [Alemi et al., 2017], and Information Dropout [Achille and Soatto, 2018]. We furthermore suggest a neural network where the decoder architecture is a parameterized naive Bayes decoder.

Citations (1)

Summary

We haven't generated a summary for this paper yet.