Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reinforcement Learning for Angle-Only Intercept Guidance of Maneuvering Targets

Published 5 Jun 2019 in cs.SY and eess.SY | (1906.02113v3)

Abstract: We present a novel guidance law that uses observations consisting solely of seeker line of sight angle measurements and their rate of change. The policy is optimized using reinforcement meta-learning and demonstrated in a simulated terminal phase of a mid-course exo-atmospheric interception. Importantly, the guidance law does not require range estimation, making it particularly suitable for passive seekers. The optimized policy maps stabilized seeker line of sight angles and their rate of change directly to commanded thrust for the missile's divert thrusters. The use of reinforcement meta-learning allows the optimized policy to adapt to target acceleration, and we demonstrate that the policy performs as well as augmented zero-effort miss guidance with perfect target acceleration knowledge. The optimized policy is computationally efficient and requires minimal memory, and should be compatible with today's flight processors.

Citations (94)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.