2000 character limit reached
Multi-Task Semantic Dependency Parsing with Policy Gradient for Learning Easy-First Strategies
Published 4 Jun 2019 in cs.CL | (1906.01239v1)
Abstract: In Semantic Dependency Parsing (SDP), semantic relations form directed acyclic graphs, rather than trees. We propose a new iterative predicate selection (IPS) algorithm for SDP. Our IPS algorithm combines the graph-based and transition-based parsing approaches in order to handle multiple semantic head words. We train the IPS model using a combination of multi-task learning and task-specific policy gradient training. Trained this way, IPS achieves a new state of the art on the SemEval 2015 Task 18 datasets. Furthermore, we observe that policy gradient training learns an easy-first strategy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.