Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integrative Semantic Dependency Parsing via Efficient Large-scale Feature Selection (1401.6050v1)

Published 23 Jan 2014 in cs.CL

Abstract: Semantic parsing, i.e., the automatic derivation of meaning representation such as an instantiated predicate-argument structure for a sentence, plays a critical role in deep processing of natural language. Unlike all other top systems of semantic dependency parsing that have to rely on a pipeline framework to chain up a series of submodels each specialized for a specific subtask, the one presented in this article integrates everything into one model, in hopes of achieving desirable integrity and practicality for real applications while maintaining a competitive performance. This integrative approach tackles semantic parsing as a word pair classification problem using a maximum entropy classifier. We leverage adaptive pruning of argument candidates and large-scale feature selection engineering to allow the largest feature space ever in use so far in this field, it achieves a state-of-the-art performance on the evaluation data set for CoNLL-2008 shared task, on top of all but one top pipeline system, confirming its feasibility and effectiveness.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hai Zhao (227 papers)
  2. Xiaotian Zhang (35 papers)
  3. Chunyu Kit (10 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.