Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis and Improvement of Adversarial Training in DQN Agents With Adversarially-Guided Exploration (AGE) (1906.01119v1)

Published 3 Jun 2019 in cs.LG, cs.AI, cs.CR, and stat.ML

Abstract: This paper investigates the effectiveness of adversarial training in enhancing the robustness of Deep Q-Network (DQN) policies to state-space perturbations. We first present a formal analysis of adversarial training in DQN agents and its performance with respect to the proportion of adversarial perturbations to nominal observations used for training. Next, we consider the sample-inefficiency of current adversarial training techniques, and propose a novel Adversarially-Guided Exploration (AGE) mechanism based on a modified hybrid of the $\epsilon$-greedy algorithm and Boltzmann exploration. We verify the feasibility of this exploration mechanism through experimental evaluation of its performance in comparison with the traditional decaying $\epsilon$-greedy and parameter-space noise exploration algorithms.

Citations (8)

Summary

We haven't generated a summary for this paper yet.