Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pangloss: a novel Markov chain prefetcher (1906.00877v1)

Published 3 Jun 2019 in cs.AR

Abstract: We present Pangloss, an efficient high-performance data prefetcher that approximates a Markov chain on delta transitions. With a limited information scope and space/logic complexity, it is able to reconstruct a variety of both simple and complex access patterns. This is achieved by a highly-efficient representation of the Markov chain to provide accurate values for transition probabilities. In addition, we have added a mechanism to reconstruct delta transitions originally obfuscated by the out-of-order execution or page transitions, such as when streaming data from multiple sources. Our single-level (L2) prefetcher achieves a geometric speedup of 1.7% and 3.2% over selected state-of-the-art baselines (KPCP and BOP). When combined with an equivalent for the L1 cache (L1 & L2), the speedups rise to 6.8% and 8.4%, and 40.4% over non-prefetch. In the multi-core evaluation, there seems to be a considerable performance improvement as well.

Citations (7)

Summary

We haven't generated a summary for this paper yet.