Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Phases, Modalities, Temporal and Spatial Locality: Domain Specific ML Prefetcher for Accelerating Graph Analytics (2212.05250v2)

Published 10 Dec 2022 in cs.LG and cs.AR

Abstract: Memory performance is a bottleneck in graph analytics acceleration. Existing Machine Learning (ML) prefetchers struggle with phase transitions and irregular memory accesses in graph processing. We propose MPGraph, an ML-based Prefetcher for Graph analytics using domain specific models. MPGraph introduces three novel optimizations: soft detection for phase transitions, phase-specific multi-modality models for access delta and page predictions, and chain spatio-temporal prefetching (CSTP) for prefetch control. Our transition detector achieves 34.17-82.15% higher precision compared with Kolmogorov-Smirnov Windowing and decision tree. Our predictors achieve 6.80-16.02% higher F1-score for delta and 11.68-15.41% higher accuracy-at-10 for page prediction compared with LSTM and vanilla attention models. Using CSTP, MPGraph achieves 12.52-21.23% IPC improvement, outperforming state-of-the-art non-ML prefetcher BO by 7.58-12.03% and ML-based prefetchers Voyager and TransFetch by 3.27-4.58%. For practical implementation, we demonstrate MPGraph using compressed models with reduced latency shows significantly superior accuracy and coverage compared with BO, leading to 3.58% higher IPC improvement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.