Papers
Topics
Authors
Recent
2000 character limit reached

The Adversarial Machine Learning Conundrum: Can The Insecurity of ML Become The Achilles' Heel of Cognitive Networks? (1906.00679v1)

Published 3 Jun 2019 in cs.NI and cs.LG

Abstract: The holy grail of networking is to create \textit{cognitive networks} that organize, manage, and drive themselves. Such a vision now seems attainable thanks in large part to the progress in the field of ML, which has now already disrupted a number of industries and revolutionized practically all fields of research. But are the ML models foolproof and robust to security attacks to be in charge of managing the network? Unfortunately, many modern ML models are easily misled by simple and easily-crafted adversarial perturbations, which does not bode well for the future of ML-based cognitive networks unless ML vulnerabilities for the cognitive networking environment are identified, addressed, and fixed. The purpose of this article is to highlight the problem of insecure ML and to sensitize the readers to the danger of adversarial ML by showing how an easily-crafted adversarial ML example can compromise the operations of the cognitive self-driving network. In this paper, we demonstrate adversarial attacks on two simple yet representative cognitive networking applications (namely, intrusion detection and network traffic classification). We also provide some guidelines to design secure ML models for cognitive networks that are robust to adversarial attacks on the ML pipeline of cognitive networks.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.