Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regression Networks for Meta-Learning Few-Shot Classification (1905.13613v2)

Published 31 May 2019 in cs.LG, cs.CV, and stat.ML

Abstract: We propose regression networks for the problem of few-shot classification, where a classifier must generalize to new classes not seen in the training set, given only a small number of examples of each class. In high dimensional embedding spaces the direction of data generally contains richer information than magnitude. Next to this, state-of-the-art few-shot metric methods that compare distances with aggregated class representations, have shown superior performance. Combining these two insights, we propose to meta-learn classification of embedded points by regressing the closest approximation in every class subspace while using the regression error as a distance metric. Similarly to recent approaches for few-shot learning, regression networks reflect a simple inductive bias that is beneficial in this limited-data regime and they achieve excellent results, especially when more aggregate class representations can be formed with multiple shots.

Citations (12)

Summary

We haven't generated a summary for this paper yet.