Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the numerical index with respect to an operator (1905.12257v1)

Published 29 May 2019 in math.FA

Abstract: Given Banach spaces $X$ and $Y$, and a norm-one operator $G\in \mathcal{L}(X,Y)$, the numerical index with respect to $G$, $n_G(X,Y)$, is the greatest constant $k\geq 0$ such that $$\max_{|w|=1}|G+wT|\geq 1 + k |T|$$ for all $T\in \mathcal{L}(X,Y)$. We present some results on the set $\mathcal{N}(\mathcal{L}(X,Y))$ of the values of the numerical indices with respect to all norm-one operators on $\mathcal{L}(X,Y)$. We show that $\mathcal{N}(\mathcal{L}(X,Y))={0}$ when $X$ or $Y$ is a real Hilbert space of dimension greater than one and also when $X$ or $Y$ is the space of bounded or compact operators on an infinite-dimensional real Hilbert space. For complex Hilbert spaces $H_1$, $H_2$ of dimension greater than one, we show that $\mathcal{N}(\mathcal{L}(H_1,H_2))\subseteq {0,1/2}$ and the value $1/2$ is taken if and only if $H_1$ and $H_2$ are isometrically isomorphic. Besides, $\mathcal{N}(\mathcal{L}(X,H))\subseteq [0,1/2]$ and $\mathcal{N}(\mathcal{L}(H,Y))\subseteq [0,1/2]$ when $H$ is a complex infinite-dimensional Hilbert space and $X$ and $Y$ are arbitrary complex Banach spaces. We also show that $\mathcal{N}(\mathcal{L}(L_1(\mu_1),L_1(\mu_2)))\subseteq {0,1}$ and $\mathcal{N}(\mathcal{L}(L_\infty(\mu_1),L_\infty(\mu_2)))\subseteq {0,1}$ for arbitrary $\sigma$-finite measures $\mu_1$ and $\mu_2$, in both the real and the complex cases. Also, we show that the Lipschitz numerical range of Lipschitz maps can be viewed as the numerical range of convenient bounded linear operators with respect to a bounded linear operator. Further, we provide some results which show the behaviour of the value of the numerical index when we apply some Banach space operations, as constructing diagonal operators between $c_0$-, $\ell_1$-, or $\ell_\infty$-sums of Banach spaces, composition operators on some vector-valued function spaces, and taking the adjoint to an operator.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.