Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the numerical radius of Lipschitz operators in Banach spaces (1211.5753v1)

Published 25 Nov 2012 in math.FA

Abstract: We study the numerical radius of Lipschitz operators on Banach spaces via the Lipschitz numerical index, which is an analogue of the numerical index in Banach space theory. We give a characterization of the numerical radius and obtain a necessary and sufficient condition for Banach spaces to have Lipschitz numerical index 1. As an application, we show that real lush spaces and $C$-rich subspaces have Lipschitz numerical index 1. Moreover, using the G$\hat{a}$teaux differentiability of Lipschitz operators, we characterize the Lipschitz numerical index of separable Banach spaces with the RNP. Finally, we prove that the Lipschitz numerical index has the stability properties for the $c_0$-, $l_1$-, and $l_\infty$-sums of spaces and vector-valued function spaces. From this, we show that the $C(K)$ spaces, $L_1(\mu)$-spaces and $L_\infty(\nu)$ spaces have Lipschitz numerical index 1.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.