Bohr and Rogosinski inequalities for operator valued holomorphic functions (2201.03849v3)
Abstract: For any complex Banach space $X$ and each $p \in [1,\infty)$, we introduce the $p$-Bohr radius of order $N(\in \mathbb{N})$ is $\widetilde{R}{p,N}(X)$ defined by $$ \widetilde{R}{p,N}(X)=\sup \left{r\geq 0: \sum_{k=0}{N}\norm{x_k}p r{pk} \leq \norm{f}p_{H{\infty}(\mathbb{D}, X)}\right}, $$ where $f(z)=\sum_{k=0}{\infty} x_{k}zk \in H{\infty}(\mathbb{D}, X)$. Here $\mathbb{D}= {z\in \mathbb{C}: |z| <1}$ denotes the unit disk. We also introduce the following geometric notion of $p$-uniformly $\mathbb{C}$-convexity of order $N$ for a complex Banach space $X$ for some $N \in \mathbb{N}$. In this paper, for $p\in [2,\infty)$ and each $N \in \mathbb{N}$, we prove that a complex Banach space $X$ is $p$-uniformly $\mathbb{C}$-convex of order $N$ if, and only if, the $p$-Bohr radius of order $N$ $\widetilde{R}_{p,N}(X)>0$. We also study the $p$-Bohr radius of order $N$ for the Lebesgue spaces $Lq (\mu)$ for $1\leq p<q<\infty$ or $1\leq q \leq p <2$. Finally, we prove an operator valued analogue of a refined version of Bohr and Rogosinski inequality for bounded holomorphic functions from the unit disk $\mathbb{D}$ into $\mathcal{B(\mathcal{H})}$, where $\mathcal{B(\mathcal{H})}$ denotes the space of all bounded linear operator on a complex Hilbert space $\mathcal{H}$.