Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximum Entropy-Regularized Multi-Goal Reinforcement Learning (1905.08786v3)

Published 21 May 2019 in cs.LG and stat.ML

Abstract: In Multi-Goal Reinforcement Learning, an agent learns to achieve multiple goals with a goal-conditioned policy. During learning, the agent first collects the trajectories into a replay buffer, and later these trajectories are selected randomly for replay. However, the achieved goals in the replay buffer are often biased towards the behavior policies. From a Bayesian perspective, when there is no prior knowledge about the target goal distribution, the agent should learn uniformly from diverse achieved goals. Therefore, we first propose a novel multi-goal RL objective based on weighted entropy. This objective encourages the agent to maximize the expected return, as well as to achieve more diverse goals. Secondly, we developed a maximum entropy-based prioritization framework to optimize the proposed objective. For evaluation of this framework, we combine it with Deep Deterministic Policy Gradient, both with or without Hindsight Experience Replay. On a set of multi-goal robotic tasks of OpenAI Gym, we compare our method with other baselines and show promising improvements in both performance and sample-efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rui Zhao (241 papers)
  2. Xudong Sun (71 papers)
  3. Volker Tresp (158 papers)
Citations (77)

Summary

We haven't generated a summary for this paper yet.