Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Scalable Learned Index Scheme in Storage Systems (1905.06256v1)

Published 8 May 2019 in cs.DB, cs.LG, and stat.ML

Abstract: Index structures are important for efficient data access, which have been widely used to improve the performance in many in-memory systems. Due to high in-memory overheads, traditional index structures become difficult to process the explosive growth of data, let alone providing low latency and high throughput performance with limited system resources. The promising learned indexes leverage deep-learning models to complement existing index structures and obtain significant memory savings. However, the learned indexes fail to become scalable due to the heavy inter-model dependency and expensive retraining. To address these problems, we propose a scalable learned index scheme to construct different linear regression models according to the data distribution. Moreover, the used models are independent so as to reduce the complexity of retraining and become easy to partition and store the data into different pages, blocks or distributed systems. Our experimental results show that compared with state-of-the-art schemes, AIDEL improves the insertion performance by about 2$\times$ and provides comparable lookup performance, while efficiently supporting scalability.

Citations (18)

Summary

We haven't generated a summary for this paper yet.