Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transfer Learning for Scientific Data Chain Extraction in Small Chemical Corpus with BERT-CRF Model (1905.05615v1)

Published 13 May 2019 in cs.CL and cs.DL

Abstract: Computational chemistry develops fast in recent years due to the rapid growth and breakthroughs in AI. Thanks for the progress in natural language processing, researchers can extract more fine-grained knowledge in publications to stimulate the development in computational chemistry. While the works and corpora in chemical entity extraction have been restricted in the biomedicine or life science field instead of the chemistry field, we build a new corpus in chemical bond field annotated for 7 types of entities: compound, solvent, method, bond, reaction, pKa and pKa value. This paper presents a novel BERT-CRF model to build scientific chemical data chains by extracting 7 chemical entities and relations from publications. And we propose a joint model to extract the entities and relations simultaneously. Experimental results on our Chemical Special Corpus demonstrate that we achieve state-of-art and competitive NER performance.

Citations (16)

Summary

We haven't generated a summary for this paper yet.