Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Automorphism groups of axial algebras (2311.18538v1)

Published 30 Nov 2023 in math.RA and math.GR

Abstract: Axial algebras are a class of commutative non-associative algebras which have a natural group of automorphisms, called the Miyamoto group. The motivating example is the Griess algebra which has the Monster sporadic simple group as its Miyamoto group. Previously, using an expansion algorithm, about 200 examples of axial algebras in the same class as the Griess algebra have been constructed in dimensions up to about 300. In this list, we see many reoccurring dimensions which suggests that there may be some unexpected isomorphisms. Such isomorphisms can be found when the full automorphism groups of the algebras are known. Hence, in this paper, we develop methods for computing the full automorphism groups of axial algebras and apply them to a number of examples of dimensions up to 151.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.