Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Generation of Moment-Based Invariants for Prob-Solvable Loops (1905.02835v3)

Published 7 May 2019 in cs.SC

Abstract: One of the main challenges in the analysis of probabilistic programs is to compute invariant properties that summarise loop behaviours. Automation of invariant generation is still at its infancy and most of the times targets only expected values of the program variables, which is insufficient to recover the full probabilistic program behaviour. We present a method to automatically generate moment-based invariants of a subclass of probabilistic programs, called Prob-Solvable loops, with polynomial assignments over random variables and parametrised distributions. We combine methods from symbolic summation and statistics to derive invariants as valid properties over higher-order moments, such as expected values or variances, of program variables. We successfully evaluated our work on several examples where full automation for computing higher-order moments and invariants over program variables was not yet possible.

Citations (30)

Summary

We haven't generated a summary for this paper yet.