Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Interpretable Outcome Prediction with Sparse Bayesian Neural Networks in Intensive Care (1905.02599v2)

Published 7 May 2019 in cs.LG and stat.ML

Abstract: Clinical decision making is challenging because of pathological complexity, as well as large amounts of heterogeneous data generated as part of routine clinical care. In recent years, machine learning tools have been developed to aid this process. Intensive care unit (ICU) admissions represent the most data dense and time-critical patient care episodes. In this context, prediction models may help clinicians determine which patients are most at risk and prioritize care. However, flexible tools such as artificial neural networks (ANNs) suffer from a lack of interpretability limiting their acceptability to clinicians. In this work, we propose a novel interpretable Bayesian neural network architecture which offers both the flexibility of ANNs and interpretability in terms of feature selection. In particular, we employ a sparsity inducing prior distribution in a tied manner to learn which features are important for outcome prediction. We evaluate our approach on the task of mortality prediction using two real-world ICU cohorts. In collaboration with clinicians we found that, in addition to the predicted outcome results, our approach can provide novel insights into the importance of different clinical measurements. This suggests that our model can support medical experts in their decision making process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Hiske Overweg (16 papers)
  2. Anna-Lena Popkes (1 paper)
  3. Ari Ercole (14 papers)
  4. Yingzhen Li (60 papers)
  5. José Miguel Hernández-Lobato (151 papers)
  6. Yordan Zaykov (3 papers)
  7. Cheng Zhang (388 papers)
Citations (24)

Summary

We haven't generated a summary for this paper yet.