Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Directing DNNs Attention for Facial Attribution Classification using Gradient-weighted Class Activation Mapping (1905.00593v1)

Published 2 May 2019 in cs.CV

Abstract: Deep neural networks (DNNs) have a high accuracy on image classification tasks. However, DNNs trained by such dataset with co-occurrence bias may rely on wrong features while making decisions for classification. It will greatly affect the transferability of pre-trained DNNs. In this paper, we propose an interactive method to direct classifiers paying attentions to the regions that are manually specified by the users, in order to mitigate the influence of co-occurrence bias. We test on CelebA dataset, the pre-trained AlexNet is fine-tuned to focus on the specific facial attributes based on the results of Grad-CAM.

Citations (4)

Summary

We haven't generated a summary for this paper yet.