Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Machine-Translated Paragraphs by Matching Similar Words

Published 24 Apr 2019 in cs.CL | (1904.10641v1)

Abstract: Machine-translated text plays an important role in modern life by smoothing communication from various communities using different languages. However, unnatural translation may lead to misunderstanding, a detector is thus needed to avoid the unfortunate mistakes. While a previous method measured the naturalness of continuous words using a N-gram LLM, another method matched noncontinuous words across sentences but this method ignores such words in an individual sentence. We have developed a method matching similar words throughout the paragraph and estimating the paragraph-level coherence, that can identify machine-translated text. Experiment evaluates on 2000 English human-generated and 2000 English machine-translated paragraphs from German showing that the coherence-based method achieves high performance (accuracy = 87.0%; equal error rate = 13.0%). It is efficiently better than previous methods (best accuracy = 72.4%; equal error rate = 29.7%). Similar experiments on Dutch and Japanese obtain 89.2% and 97.9% accuracy, respectively. The results demonstrate the persistence of the proposed method in various languages with different resource levels.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.