Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quantum geometry of moduli spaces of local systems and representation theory

Published 23 Apr 2019 in math.RT, math-ph, math.AG, and math.MP | (1904.10491v4)

Abstract: Let G be a split semi-simple adjoint group, and S a colored decorated surface, given by an oriented surface with punctures, special boundary points, and a specified collection of boundary intervals. We introduce a moduli space P(G,S) parametrizing G-local system on S with some boundary data, and prove that it carries a cluster Poisson structure, equivariant under the action of the cluster modular group M(G,S), containing the mapping class group of S, the group of outer automorphisms of G, and the product of Weyl / braid groups over punctures / boundary components. We prove that the dual moduli space A(G,S) carries a M(G,S)-equivariant cluster structure, and the pair (A(G,S), P(G,S)) is a cluster ensemble. These results generalize the works of V. Fock & the first author, and of I. Le. We quantize cluster Poisson varieties X for any Planck constant h s.t. h>0 or |h|=1. First, we define a *-algebra structure on the Langlands modular double A(h; X) of the algebra of functions on X. We construct a principal series of representations of the *-algebra A(h; X), equivariant under a unitary projective representation of the cluster modular group M(X). This extends works of V. Fock and the first author when h>0. Combining this, we get a M(G,S)-equivariant quantization of the moduli space P(G,S), given by the *-algebra A(h; P(G,S)) and its principal series representations. We construct realizations of the principal series *-representations. In particular, when S is punctured disc with two special points, we get a principal series *-representations of the Langlands modular double of the quantum group Uq(g). We conjecture that there is a nondegenerate pairing between the local system of coinvariants of oscillatory representations of the W-algebra and the one provided by the projective representation of the mapping class group of S.

Citations (48)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.