Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DirectShape: Direct Photometric Alignment of Shape Priors for Visual Vehicle Pose and Shape Estimation (1904.10097v2)

Published 22 Apr 2019 in cs.CV

Abstract: Scene understanding from images is a challenging problem encountered in autonomous driving. On the object level, while 2D methods have gradually evolved from computing simple bounding boxes to delivering finer grained results like instance segmentations, the 3D family is still dominated by estimating 3D bounding boxes. In this paper, we propose a novel approach to jointly infer the 3D rigid-body poses and shapes of vehicles from a stereo image pair using shape priors. Unlike previous works that geometrically align shapes to point clouds from dense stereo reconstruction, our approach works directly on images by combining a photometric and a silhouette alignment term in the energy function. An adaptive sparse point selection scheme is proposed to efficiently measure the consistency with both terms. In experiments, we show superior performance of our method on 3D pose and shape estimation over the previous geometric approach and demonstrate that our method can also be applied as a refinement step and significantly boost the performances of several state-of-the-art deep learning based 3D object detectors. All related materials and demonstration videos are available at the project page https://vision.in.tum.de/research/vslam/direct-shape.

Citations (24)

Summary

We haven't generated a summary for this paper yet.