Papers
Topics
Authors
Recent
2000 character limit reached

Explaining a prediction in some nonlinear models

Published 21 Apr 2019 in cs.LG and stat.ML | (1904.09615v4)

Abstract: In this article we will analyse how to compute the contribution of each input value to its aggregate output in some nonlinear models. Regression and classification applications, together with related algorithms for deep neural networks are presented. The proposed approach merges two methods currently present in the literature: integrated gradient and deep Taylor decomposition. Compared to DeepLIFT and Deep SHAP, it provides a natural choice of the reference point peculiar to the model at use.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.