Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying Points of Interest and Similar Individuals from Raw GPS Data (1904.09357v1)

Published 19 Apr 2019 in cs.LG and stat.ML

Abstract: Smartphones and portable devices have become ubiquitous and part of everyone's life. Due to the fact of its portability, these devices are perfect to record individuals' traces and life-logging generating vast amounts of data at low costs. These data is emerging as a new source for studies in human mobility patterns raising the number of research projects and techniques aiming to analyze and retrieve useful information from it. The aim of this paper is to explore GPS raw data from different individuals in a community and apply data mining algorithms to identify meaningful places in a region and describe user's profiles and its similarities. We evaluate the proposed method with a real-world dataset. The experimental results show that the steps performed to identify points of interest (POIs) and further the similarity between the users are quite satisfactory serving as a supplement for urban planning and social networks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Thiago Andrade (2 papers)
  2. João Gama (30 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.