Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized threshold arrangements (1904.08903v1)

Published 18 Apr 2019 in math.CO and cs.DM

Abstract: An arrangement of hyperplanes is a finite collection of hyperplanes in a real Euclidean space. To such a collection one associates the characteristic polynomial that encodes the combinatorics of intersections of the hyperplanes. Finding the characteristic polynomial of the Shi threshold and the Catalan threshold arrangements was an open problem in Stanley's list of problems in [1]. Seunghyun Seo solved both the problems by clever arguments using the finite field method in [3,4]. However, in his paper, he left open the problem of computing the characteristic polynomial of a broader class of threshold arrangements, the so-called "generalized threshold" arrangements whose defining set of hyperplanes is given by $x_i + x_j = -l,-l+1,...,m-1,m$ for $1 \le i < j \le n$ where $l,m \in \mathbb{N}$. In this paper, we present a method for computing the characteristic polynomial of this family of arrangements.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.