Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The positive semidefinite Grothendieck problem with rank constraint (0910.5765v3)

Published 30 Oct 2009 in math.OC, cs.DS, math.CO, and math.FA

Abstract: Given a positive integer n and a positive semidefinite matrix A = (A_{ij}) of size m x m, the positive semidefinite Grothendieck problem with rank-n-constraint (SDP_n) is maximize \sum_{i=1}m \sum_{j=1}m A_{ij} x_i \cdot x_j, where x_1, ..., x_m \in S{n-1}. In this paper we design a polynomial time approximation algorithm for SDP_n achieving an approximation ratio of \gamma(n) = \frac{2}{n}(\frac{\Gamma((n+1)/2)}{\Gamma(n/2)})2 = 1 - \Theta(1/n). We show that under the assumption of the unique games conjecture the achieved approximation ratio is optimal: There is no polynomial time algorithm which approximates SDP_n with a ratio greater than \gamma(n). We improve the approximation ratio of the best known polynomial time algorithm for SDP_1 from 2/\pi to 2/(\pi\gamma(m)) = 2/\pi + \Theta(1/m), and we show a tighter approximation ratio for SDP_n when A is the Laplacian matrix of a graph with nonnegative edge weights.

Citations (39)

Summary

We haven't generated a summary for this paper yet.