Papers
Topics
Authors
Recent
Search
2000 character limit reached

Audio-noise Power Spectral Density Estimation Using Long Short-term Memory

Published 10 Apr 2019 in eess.SP, cs.SD, and eess.AS | (1904.05166v1)

Abstract: We propose a method using a long short-term memory (LSTM) network to estimate the noise power spectral density (PSD) of single-channel audio signals represented in the short time Fourier transform (STFT) domain. An LSTM network common to all frequency bands is trained, which processes each frequency band individually by mapping the noisy STFT magnitude sequence to its corresponding noise PSD sequence. Unlike deep-learning-based speech enhancement methods that learn the full-band spectral structure of speech segments, the proposed method exploits the sub-band STFT magnitude evolution of noise with a long time dependency, in the spirit of the unsupervised noise estimators described in the literature. Speaker- and speech-independent experiments with different types of noise show that the proposed method outperforms the unsupervised estimators, and generalizes well to noise types that are not present in the training set.

Citations (8)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.