Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LSTM based AE-DNN constraint for better late reverb suppression in multi-channel LP formulation (1812.01346v1)

Published 4 Dec 2018 in eess.AS and cs.SD

Abstract: Prediction of late reverberation component using multi-channel linear prediction (MCLP) in short-time Fourier transform (STFT) domain is an effective means to enhance reverberant speech. Traditionally, a speech power spectral density (PSD) weighted prediction error (WPE) minimization approach is used to estimate the prediction filters. The method is sensitive to the estimate of the desired signal PSD. In this paper, we propose a deep neural network (DNN) based non-linear estimate for the desired signal PSD. An auto encoder trained on clean speech STFT coefficients is used as the desired signal prior. We explore two different architectures based on (i) fully-connected (FC) feed-forward, and (ii) recurrent long short-term memory (LSTM) layers. Experiments using real room impulse responses show that the LSTM-DNN based PSD estimate performs better than the traditional methods for late reverb suppression.

Summary

We haven't generated a summary for this paper yet.