Algebraic Quantum Field Theory -- an introduction (1904.04051v2)
Abstract: We give a pedagogical introduction to algebraic quantum field theory (AQFT), with the aim of explaining its key structures and features. Topics covered include: algebraic formulations of quantum theory and the GNS representation theorem, the appearance of unitarily inequivalent representations in QFT (exemplified by the van Hove model), the main assumptions of AQFT and simple models thereof, the spectrum condition, Reeh--Schlieder theorem, split property, the universal type of local algebras, and the theory of superselection sectors. The abstract discussion is illustrated by concrete examples. One of our concerns is to explain various ways in which quantum field theory differs from quantum mechanics, not just in terms of technical detail, but in terms of physical content. The text is supplemented by exercises and appendices that enlarge on some of the relevant mathematical background. These notes are based on lectures given by CJF for the International Max Planck Research School at the Albert Einstein Institute, Golm (October, 2018) and by KR at the Raman Research Institute, Bangalore (January, 2019).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.