Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
24 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
35 tokens/sec
2000 character limit reached

Entanglement Entropy and Algebra in Quantum Field Theory (2307.06286v1)

Published 12 Jul 2023 in math-ph, hep-th, and math.MP

Abstract: Quantum Field Theory (QFT) represents a vast generalization of Quantum Mechanics (QM), as it deals with systems that have an infinite number of degrees of freedom. The Stone-von Neumann theorem, which establishes the equivalence of irreducible representations of the canonical commutation relations (CCR) in QM, does not extend to QFT. Consequently, QFT admits multiple inequivalent irreducible representations, leading to a much richer algebraic structure. This essay aims to explore the physics of QFT from the operator algebra perspective, particularly focusing on entanglement entropy. We discuss the role of von Neumann algebras of different types in QFT, describe the local operator algebra approach to QFT, and explain how entanglement entropy can be defined in terms of the algebra of observables. Additionally, we explore the benefits of this approach in concrete applications, specifically in quantum field theory on curved spacetime.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)