Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Target Recognition Using Discrimination Based on Optimal Transport (1904.03534v1)

Published 6 Apr 2019 in cs.CV and cs.AI

Abstract: The use of distances based on optimal transportation has recently shown promise for discrimination of power spectra. In particular, spectral estimation methods based on l1 regularization as well as covariance based methods can be shown to be robust with respect to such distances. These transportation distances provide a geometric framework where geodesics corresponds to smooth transition of spectral mass, and have been useful for tracking. In this paper, we investigate the use of these distances for automatic target recognition. We study the use of the Monge-Kantorovich distance compared to the standard l2 distance for classifying civilian vehicles based on SAR images. We use a version of the Monge-Kantorovich distance that applies also for the case where the spectra may have different total mass, and we formulate the optimization problem as a minimum flow problem that can be computed using efficient algorithms.

Citations (9)

Summary

We haven't generated a summary for this paper yet.