Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Taco-VC: A Single Speaker Tacotron based Voice Conversion with Limited Data (1904.03522v4)

Published 6 Apr 2019 in cs.SD, cs.LG, and eess.AS

Abstract: This paper introduces Taco-VC, a novel architecture for voice conversion based on Tacotron synthesizer, which is a sequence-to-sequence with attention model. The training of multi-speaker voice conversion systems requires a large number of resources, both in training and corpus size. Taco-VC is implemented using a single speaker Tacotron synthesizer based on Phonetic PosteriorGrams (PPGs) and a single speaker WaveNet vocoder conditioned on mel spectrograms. To enhance the converted speech quality, and to overcome over-smoothing, the outputs of Tacotron are passed through a novel speechenhancement network, which is composed of a combination of the phoneme recognition and Tacotron networks. Our system is trained just with a single speaker corpus and adapts to new speakers using only a few minutes of training data. Using mid-size public datasets, our method outperforms the baseline in the VCC 2018 SPOKE non-parallel voice conversion task and achieves competitive results compared to multi-speaker networks trained on large private datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Roee Levy Leshem (1 paper)
  2. Raja Giryes (156 papers)
Citations (8)

Summary

We haven't generated a summary for this paper yet.