Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ReNets: Toward Statically Optimal Self-Adjusting Networks (1904.03263v1)

Published 5 Apr 2019 in cs.NI

Abstract: This paper studies the design of self-adjusting networks whose topology dynamically adapts to the workload, in an online and demand-aware manner. This problem is motivated by emerging optical technologies which allow to reconfigure the datacenter topology at runtime. Our main contribution is ReNet, a self-adjusting network which maintains a balance between the benefits and costs of reconfigurations. In particular, we show that ReNets are statically optimal for arbitrary sparse communication demands, i.e., perform at least as good as any fixed demand-aware network designed with a perfect knowledge of the future demand. Furthermore, ReNets provide compact and local routing, by leveraging ideas from self-adjusting datastructures.

Citations (11)

Summary

We haven't generated a summary for this paper yet.