Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Snap and Find: Deep Discrete Cross-domain Garment Image Retrieval (1904.02887v1)

Published 5 Apr 2019 in cs.CV

Abstract: With the increasing number of online stores, there is a pressing need for intelligent search systems to understand the item photos snapped by customers and search against large-scale product databases to find their desired items. However, it is challenging for conventional retrieval systems to match up the item photos captured by customers and the ones officially released by stores, especially for garment images. To bridge the customer- and store- provided garment photos, existing studies have been widely exploiting the clothing attributes (\textit{e.g.,} black) and landmarks (\textit{e.g.,} collar) to learn a common embedding space for garment representations. Unfortunately they omit the sequential correlation of attributes and consume large quantity of human labors to label the landmarks. In this paper, we propose a deep multi-task cross-domain hashing termed \textit{DMCH}, in which cross-domain embedding and sequential attribute learning are modeled simultaneously. Sequential attribute learning not only provides the semantic guidance for embedding, but also generates rich attention on discriminative local details (\textit{e.g.,} black buttons) of clothing items without requiring extra landmark labels. This leads to promising performance and 306$\times$ boost on efficiency when compared with the state-of-the-art models, which is demonstrated through rigorous experiments on two public fashion datasets.

Citations (7)

Summary

We haven't generated a summary for this paper yet.