Papers
Topics
Authors
Recent
2000 character limit reached

Beyond Tracking: Selecting Memory and Refining Poses for Deep Visual Odometry

Published 3 Apr 2019 in cs.CV | (1904.01892v2)

Abstract: Most previous learning-based visual odometry (VO) methods take VO as a pure tracking problem. In contrast, we present a VO framework by incorporating two additional components called Memory and Refining. The Memory component preserves global information by employing an adaptive and efficient selection strategy. The Refining component ameliorates previous results with the contexts stored in the Memory by adopting a spatial-temporal attention mechanism for feature distilling. Experiments on the KITTI and TUM-RGBD benchmark datasets demonstrate that our method outperforms state-of-the-art learning-based methods by a large margin and produces competitive results against classic monocular VO approaches. Especially, our model achieves outstanding performance in challenging scenarios such as texture-less regions and abrupt motions, where classic VO algorithms tend to fail.

Citations (96)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.