Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Visual Odometry with Adaptive Memory (2008.01655v1)

Published 2 Aug 2020 in cs.RO

Abstract: We propose a novel deep visual odometry (VO) method that considers global information by selecting memory and refining poses. Existing learning-based methods take the VO task as a pure tracking problem via recovering camera poses from image snippets, leading to severe error accumulation. Global information is crucial for alleviating accumulated errors. However, it is challenging to effectively preserve such information for end-to-end systems. To deal with this challenge, we design an adaptive memory module, which progressively and adaptively saves the information from local to global in a neural analogue of memory, enabling our system to process long-term dependency. Benefiting from global information in the memory, previous results are further refined by an additional refining module. With the guidance of previous outputs, we adopt a spatial-temporal attention to select features for each view based on the co-visibility in feature domain. Specifically, our architecture consisting of Tracking, Remembering and Refining modules works beyond tracking. Experiments on the KITTI and TUM-RGBD datasets demonstrate that our approach outperforms state-of-the-art methods by large margins and produces competitive results against classic approaches in regular scenes. Moreover, our model achieves outstanding performance in challenging scenarios such as texture-less regions and abrupt motions, where classic algorithms tend to fail.

Citations (13)

Summary

We haven't generated a summary for this paper yet.