Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MAVNet: an Effective Semantic Segmentation Micro-Network for MAV-based Tasks (1904.01795v2)

Published 3 Apr 2019 in cs.CV

Abstract: Real-time semantic image segmentation on platforms subject to size, weight and power (SWaP) constraints is a key area of interest for air surveillance and inspection. In this work, we propose MAVNet: a small, light-weight, deep neural network for real-time semantic segmentation on micro Aerial Vehicles (MAVs). MAVNet, inspired by ERFNet, features 400 times fewer parameters and achieves comparable performance with some reference models in empirical experiments. Our model achieves a trade-off between speed and accuracy, achieving up to 48 FPS on an NVIDIA 1080Ti and 9 FPS on the NVIDIA Jetson Xavier when processing high resolution imagery. Additionally, we provide two novel datasets that represent challenges in semantic segmentation for real-time MAV tracking and infrastructure inspection tasks and verify MAVNet on these datasets. Our algorithm and datasets are made publicly available.

Citations (34)

Summary

We haven't generated a summary for this paper yet.