Papers
Topics
Authors
Recent
Search
2000 character limit reached

M2KD: Multi-model and Multi-level Knowledge Distillation for Incremental Learning

Published 3 Apr 2019 in cs.CV | (1904.01769v2)

Abstract: Incremental learning targets at achieving good performance on new categories without forgetting old ones. Knowledge distillation has been shown critical in preserving the performance on old classes. Conventional methods, however, sequentially distill knowledge only from the last model, leading to performance degradation on the old classes in later incremental learning steps. In this paper, we propose a multi-model and multi-level knowledge distillation strategy. Instead of sequentially distilling knowledge only from the last model, we directly leverage all previous model snapshots. In addition, we incorporate an auxiliary distillation to further preserve knowledge encoded at the intermediate feature levels. To make the model more memory efficient, we adapt mask based pruning to reconstruct all previous models with a small memory footprint. Experiments on standard incremental learning benchmarks show that our method preserves the knowledge on old classes better and improves the overall performance over standard distillation techniques.

Citations (53)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.