Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Stop in Structured Prediction for Neural Machine Translation (1904.01032v3)

Published 1 Apr 2019 in cs.CL

Abstract: Beam search optimization resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers the longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stopping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German-to-English and Chinese-to-English) demonstrate our proposed methods lead to better length and BLEU score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mingbo Ma (32 papers)
  2. Renjie Zheng (29 papers)
  3. Liang Huang (108 papers)
Citations (5)