Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning to Stop in Structured Prediction for Neural Machine Translation

Published 1 Apr 2019 in cs.CL | (1904.01032v3)

Abstract: Beam search optimization resolves many issues in neural machine translation. However, this method lacks principled stopping criteria and does not learn how to stop during training, and the model naturally prefers the longer hypotheses during the testing time in practice since they use the raw score instead of the probability-based score. We propose a novel ranking method which enables an optimal beam search stopping criteria. We further introduce a structured prediction loss function which penalizes suboptimal finished candidates produced by beam search during training. Experiments of neural machine translation on both synthetic data and real languages (German-to-English and Chinese-to-English) demonstrate our proposed methods lead to better length and BLEU score.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.