Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skew selection for factor stochastic volatility models (1903.11005v1)

Published 26 Mar 2019 in stat.ME

Abstract: This paper proposes factor stochastic volatility models with skew error distributions. The generalized hyperbolic skew t-distribution is employed for common-factor processes and idiosyncratic shocks. Using a Bayesian sparsity modeling strategy for the skewness parameter provides a parsimonious skew structure for possibly high-dimensional stochastic volatility models. Analyses of daily stock returns are provided. Empirical results show that the skewness is important for common-factor processes but less for idiosyncratic shocks. The sparse skew structure improves prediction and portfolio performance.

Summary

We haven't generated a summary for this paper yet.