Papers
Topics
Authors
Recent
Search
2000 character limit reached

Skew selection for factor stochastic volatility models

Published 26 Mar 2019 in stat.ME | (1903.11005v1)

Abstract: This paper proposes factor stochastic volatility models with skew error distributions. The generalized hyperbolic skew t-distribution is employed for common-factor processes and idiosyncratic shocks. Using a Bayesian sparsity modeling strategy for the skewness parameter provides a parsimonious skew structure for possibly high-dimensional stochastic volatility models. Analyses of daily stock returns are provided. Empirical results show that the skewness is important for common-factor processes but less for idiosyncratic shocks. The sparse skew structure improves prediction and portfolio performance.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.