2000 character limit reached
Non left-orderable surgeries on L-space twisted torus knots (1903.07077v1)
Published 17 Mar 2019 in math.GT
Abstract: We show that if $K$ is an L-space twisted torus knot $T{l,m}_{p,pk \pm 1}$ with $p \ge 2$, $k \ge 1$, $m \ge 1$ and $1 \le l \le p-1$, then the fundamental group of the $3$-manifold obtained by $\frac{r}{s}$-surgery along $K$ is not left-orderable whenever $\frac{r}{s} \ge 2 g(K) -1$, where $g(K)$ is the genus of $K$.