2000 character limit reached
Automatic assessment of spoken language proficiency of non-native children
Published 15 Mar 2019 in cs.CL | (1903.06409v1)
Abstract: This paper describes technology developed to automatically grade Italian students (ages 9-16) on their English and German spoken language proficiency. The students' spoken answers are first transcribed by an automatic speech recognition (ASR) system and then scored using a feedforward neural network (NN) that processes features extracted from the automatic transcriptions. In-domain acoustic models, employing deep neural networks (DNNs), are derived by adapting the parameters of an original out of domain DNN.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.