Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Autonomous Vehicle Policy Transfer: From Simulation to Real-World via Adversarial Learning (1903.05252v4)

Published 12 Mar 2019 in cs.SY

Abstract: In this article, we demonstrate a zero-shot transfer of an autonomous driving policy from simulation to University of Delaware's scaled smart city with adversarial multi-agent reinforcement learning, in which an adversary attempts to decrease the net reward by perturbing both the inputs and outputs of the autonomous vehicles during training. We train the autonomous vehicles to coordinate with each other while crossing a roundabout in the presence of an adversary in simulation. The adversarial policy successfully reproduces the simulated behavior and incidentally outperforms, in terms of travel time, both a human-driving baseline and adversary-free trained policies. Finally, we demonstrate that the addition of adversarial training considerably improves the performance \eat{stability and robustness} of the policies after transfer to the real world compared to Gaussian noise injection.

Citations (46)

Summary

We haven't generated a summary for this paper yet.