Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Characterization of Local Attitudes Toward Immigration Using Social Media (1903.05072v1)

Published 12 Mar 2019 in cs.SI and cs.CY

Abstract: Migration is a worldwide phenomenon that may generate different reactions in the population. Attitudes vary from those that support multiculturalism and communion between locals and foreigners, to contempt and hatred toward immigrants. Since anti-immigration attitudes are often materialized in acts of violence and discrimination, it is important to identify factors that characterize these attitudes. However, doing so is expensive and impractical, as traditional methods require enormous efforts to collect data. In this paper, we propose to leverage Twitter to characterize local attitudes toward immigration, with a case study on Chile, where immigrant population has drastically increased in recent years. Using semi-supervised topic modeling, we situated 49K users into a spectrum ranging from in-favor to against immigration. We characterized both sides of the spectrum in two aspects: the emotions and lexical categories relevant for each attitude, and the discussion network structure. We found that the discussion is mostly driven by Haitian immigration; that there are temporal trends in tendency and polarity of discussion; and that assortative behavior on the network differs with respect to attitude. These insights may inform policy makers on how people feel with respect to migration, with potential implications on communication of policy and the design of interventions to improve inter-group relations.

Citations (12)

Summary

We haven't generated a summary for this paper yet.