Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised motion saliency map estimation based on optical flow inpainting (1903.04842v2)

Published 12 Mar 2019 in cs.CV

Abstract: The paper addresses the problem of motion saliency in videos, that is, identifying regions that undergo motion departing from its context. We propose a new unsupervised paradigm to compute motion saliency maps. The key ingredient is the flow inpainting stage. Candidate regions are determined from the optical flow boundaries. The residual flow in these regions is given by the difference between the optical flow and the flow inpainted from the surrounding areas. It provides the cue for motion saliency. The method is flexible and general by relying on motion information only. Experimental results on the DAVIS 2016 benchmark demonstrate that the method compares favourably with state-of-the-art video saliency methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.