Inner approximations of the maximal positively invariant set for polynomial dynamical systems
Abstract: The Lasserre or moment-sum-of-square hierarchy of linear matrix inequality relaxations is used to compute inner approximations of the maximal positively invariant set for continuous-time dynamical systems with polynomial vector fields. Convergence in volume of the hierarchy is proved under a technical growth condition on the average exit time of trajectories. Our contribution is to deal with inner approximations in infinite time, while former work with volume convergence guarantees proposed either outer approximations of the maximal positively invariant set or inner approximations of the region of attraction in finite time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.