Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Computation of invariant sets via immersion for discrete-time nonlinear systems (2010.00974v4)

Published 2 Oct 2020 in eess.SY and cs.SY

Abstract: In this paper, we propose an approach for computing invariant sets of discrete-time nonlinear systems by lifting the nonlinear dynamics into a higher dimensional linear model. In particular, we focus on the \emph{maximal admissible invariant set} contained in some given constraint set. For special types of nonlinear systems, which can be exactly immersed into higher dimensional linear systems with state transformations, invariant sets of the original nonlinear system can be characterized using the higher dimensional linear representation. For general nonlinear systems without the immersibility property, \emph{approximate immersions} are defined in a local region within some tolerance and linear approximations are computed by leveraging the fixed-point iteration technique for invariant sets. Given the bound on the mismatch between the linear approximation and the original system, we provide an invariant inner approximation of the \emph{maximal admissible invariant set} by a tightening procedure.

Citations (5)

Summary

We haven't generated a summary for this paper yet.