Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep CNN-based Multi-task Learning for Open-Set Recognition (1903.03161v1)

Published 7 Mar 2019 in cs.CV and cs.LG

Abstract: We propose a novel deep convolutional neural network (CNN) based multi-task learning approach for open-set visual recognition. We combine a classifier network and a decoder network with a shared feature extractor network within a multi-task learning framework. We show that this approach results in better open-set recognition accuracy. In our approach, reconstruction errors from the decoder network are utilized for open-set rejection. In addition, we model the tail of the reconstruction error distribution from the known classes using the statistical Extreme Value Theory to improve the overall performance. Experiments on multiple image classification datasets are performed and it is shown that this method can perform significantly better than many competitive open set recognition algorithms available in the literature. The code will be made available at: github.com/otkupjnoz/mlosr.

Citations (33)

Summary

We haven't generated a summary for this paper yet.