Papers
Topics
Authors
Recent
Search
2000 character limit reached

Robust Semantic Segmentation By Dense Fusion Network On Blurred VHR Remote Sensing Images

Published 7 Mar 2019 in cs.CV | (1903.02702v2)

Abstract: Robust semantic segmentation of VHR remote sensing images from UAV sensors is critical for earth observation, land use, land cover or mapping applications. Several factors such as shadows, weather disruption and camera shakes making this problem highly challenging, especially only using RGB images. In this paper, we propose the use of multi-modality data including NIR, RGB and DSM to increase robustness of segmentation in blurred or partially damaged VHR remote sensing images. By proposing a cascaded dense encoder-decoder network and the SELayer based fusion and assembling techniques, the proposed RobustDenseNet achieves steady performance when the image quality is decreasing, compared with the state-of-the-art semantic segmentation model.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.