Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Training in Task Space to Speed Up and Guide Reinforcement Learning (1903.02219v1)

Published 6 Mar 2019 in cs.RO, cs.LG, and cs.SY

Abstract: Recent breakthroughs in the reinforcement learning (RL) community have made significant advances towards learning and deploying policies on real world robotic systems. However, even with the current state-of-the-art algorithms and computational resources, these algorithms are still plagued with high sample complexity, and thus long training times, especially for high degree of freedom (DOF) systems. There are also concerns arising from lack of perceived stability or robustness guarantees from emerging policies. This paper aims at mitigating these drawbacks by: (1) modeling a complex, high DOF system with a representative simple one, (2) making explicit use of forward and inverse kinematics without forcing the RL algorithm to "learn" them on its own, and (3) learning locomotion policies in Cartesian space instead of joint space. In this paper these methods are applied to JPL's Robosimian, but can be readily used on any system with a base and end effector(s). These locomotion policies can be produced in just a few minutes, trained on a single laptop. We compare the robustness of the resulting learned policies to those of other control methods. An accompanying video for this paper can be found at https://youtu.be/xDxxSw5ahnc .

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com